
15-418 – Final Project Report

Running From The Night:
Calculating The Lunar Magellan Route in Parallel

Kevin Fang Nikolai Stefanov

May 6, 2024

1 Summary
This project focuses on creating a lightweight and somewhat accurate parallel application
using MPI in C++ that when given a set of points of interest located in scientific zones on
the lunar surface, finds with a greedy algorithm a relatively short path that visits a point
interest in all scientific zones at least once. We chose this approach, because during our past
experience with lunar robotics missions at CMU, we wanted a pathfinding algorithm that can
be run fast on personal laptops during lunar missions and deliver generally-decent results for
the kinds of rough estimations that are made during planning phases. The deliverables are
our path creator algorithm and we will present an example output path from this graphed
onto a shadow map of the lunar surface.

2 Background
The ”Magellan Route” is a theoretical path that maintains constant daylight on the moon’s
surface. For the sake of this problem, we are implementing a version of the A* pathfinding
algorithm which we’ve adapted to execute in parallel across multiple nodes. In a proposed
mission, a rover will traverse this ”Magellan Route” and deploy small radio antennas in per-
manently shadowed regions, with sufficient distance between them. This distance denotes
the scientific zones, where at least one antenna must be placed (thus our route must traverse
right next to).

Our data structures include:

1. Node represents a point at int (x,y) coordinate with its related float cost to reach
the node, a float heuristic estimate for distance to goal, a Node* patent pointer

This version: May 6, 2024 1 kevinfan, nstefano



15-418 – Final Project Report

to it’s parent node, and bool flagstfor whether the point is either blocked or shadowed.
We compare Nodes by checking for the lower heuristic value, which represents the
Node that is closer to the goal coordinate during our A* algorithm. item grid is A
2D array of integers, where each cell can be 0 (accessible) or 1 (blocked). This grid
is used to initialize the routeMap by mapping each cell to a corresponding Node. We
converted the LROC map for total shaded regions into a 5048 x 5048-sized grid which
due to its massive size is imported as a include shadowmap.h into our main code.

2. routeMap is the 2D vector of Node objects mirroring the Grid. This structure holds
all the path-related data for each point, including costs and heuristic values updated
during the execution of the A* algorithm.

3. antennaList is a list containing antennas’ locations represented as vector pairs, each
representing like for Node int (x,y) coordinates. These locations are used during
pathfinding in order to separate out each ”stage” of the pathfinding algorithm which is
split up and assigned to processors. Antenna locations aren’t set by us when running
the program and are determined by the program with each processor finding their ideal
antenna locations – more information on this in the Approach section.

4. Priority Queue: Inside our implementation of the A* algorithm, we have a priority
queue to dynamically fetch the next most promising Node to visit based on combined
cost + heuristic estimations (priority is given to nodes with lower values).

For operations we perform on these data structures, we first start off by loading in the
Grid into a routeMap at the start of the algorithm. We then find a subset of possible
antenna locations (how depends on the specific parallelism approach). A* then one-by-one
expands through nodes beginning from the first, updating the routeMap Nodes with distance
estimations and parent Nodes as it travels through the lunar surface from the starting node(s)
to either the next antenna’s assigned areas for each processor or to the very end of the image
(see Approach for more information).

Our main function has the constants that we change to affect how the grid zone assign-
ments of the routeMap are made for the antennaList. It prints the most cost-effective path
to get from the start to the destination as found by A*, keeping in mind the need to avoid
permanently shaded areas of the moon in relation to the placement of radio antennas in
order to maintain signal with the rover.

This program utilizes MPI for parallel processing, taking advantage of the potential
paths that can independently calculated at the same time. The significant computational
challenge lies in both the pathfinding calculations, particularly in densely blocked or complex
areas, making efficient parallelization critical to performance improvement, and also the total
number of permutations of waypoints to stop at along a path. Our default, and most optimal,

This version: May 6, 2024 2 kevinfan, nstefano



15-418 – Final Project Report

approach is a vertical parallelism across rows – in our Approach section, we will discuss our
journey designing the Parallelism Across Columns variation.

3 Approach
Before designing and coding our implementations, we needed to decide what languages,
platforms, and frameworks to use, then convert our given data (the .IMG LRO files). We
chose C++ and used MPI as our message-passing interface. Initially, our implementation
featured a utilization of the Geospatial Data Abstraction Library (GDAL), a C++ library
designed to convert the IMG file formats from the LRO files into usable data. However, we
realized it made no sense to convert the image files while the program was running, as we
could simply convert the files ahead of time, as this is not something that needs to be done
at runtime. Therefore, our Python-script converted it into shadowmap.h, containing all of
the needed permanently shaded region information.

We used the algorithm from https://www.geeksforgeeks.org/a-search-algorithm/ as a
starting point for us to implement the A* algorithm, though we heavily modified it and
created multiple versions of it to support our project needs. Furthermore, one important
note before discussing our two main approaches is that our algorithm started by finding the
antenna locations. We did not have set antenna locations, so our implementations changed
which antenna locations we were viewing. This will be important for future discussions on
optimization. It’s also important to note that the amount of permutations in antenna visita-
tion, thus problem size, increase as (num antennas per zone)num antennas. Therefore, we found
that we had to limit the number of antennas per zone, otherwise it would take forever. We
did most of these tests on one of our personal laptops, which was a 10-core (8 performance,
2 efficiency) mac with 64GB of ram.

Initially, we wanted to use GHC machines in order to run our tests. However, we found
out that they had difficulties with opening files that contained a lot of rows and columns
(a file would simply be deleted or not be able to be opened). If we had to program for
GHC machines, we would consider separating our shadowmap.h into multiple maps loaded
in when a processor needs it. However, for our personal devices, our M1 chips/desktop PC
have high bandwidth across the interconnect, so loading the entire shadowmap.h was also
faster than selectively loading in limited routeMap and resizing when needed (as well as
being far simpler and less likely to have bugs/issues related to missing pieces of the map.

Although using personal machines helped us with accessing our shadowmap.h, didn’t
come across disk space/ssh connection issues, and were more comfortable to develop on,
one new challenge we had which we had not encountered before in this class was setting up
and developing parallel programs for very different devices, as for all previous assignments
we used the GHC machines and did not need to choose different versions/installations of

This version: May 6, 2024 3 kevinfan, nstefano



15-418 – Final Project Report

MPI. For the team’s devices, one was a desktop PC with an i7 that required installing MS-
MPI, while the other was an M1 Macbook Pro that was running OpenMPI. This resulted
in test results that differed greatly, and modifications to the code which sped up test results
sometimes actually slowed down test results on the other team member’s device.

Table 1: Comparing Development Platforms
Feature Microsoft MSI Desktop M1 Macbook Pro
Processor Intel Core i7-4790 Apple M1
Cores 4 physical, 8 logical 8 performance cores
Operating System Windows 10 macOS
MPI Implementation MS-MPI OpenMPI
IDE Visual Studio Code Visual Studio Code
C++ Environment MinGW-w64 Native Apple clang
Pros Multithreading High bandwidth + efficiency cores
Cons Older architecture ARM architecture support
Other Hyperthreading High bandwidth interconnect

Though this initially presented a great frustration as we individually had to figure out
how to set up our C++ and MPI environments and then ensure during development that
we made sure to use MPI calls that were universal across MPI implementations, ultimately
this turned out to be an interesting development to our project, as similarly to PSC/GHC
comparisons we could compare and contrast results and learn more about how processor,
MPI implementation, and OS choices impact how parallel code is developed and run.

We ultimately determined to use the Macbook Pro as our primary test/optimizer device.
This is because the M1, with its higher number of cores and better parallelism as well as being
more modern, contained both high-performance and high-efficiency cores with improved
data sharing, more closely represents the future devices which would run our code. For more
practical reasons, it ran our tests significantly faster as well, which improved our test/develop
cycle speed.

Table 2: Vertical Parallelism - i7
Threads Time (ms) Comp Speedup

1 1056869 1
2 1392248 0.7591
4 749162 1.4107
8 462892 2.2832

This version: May 6, 2024 4 kevinfan, nstefano



15-418 – Final Project Report

Table 3: Vertical Parallelism - M1
Threads Time (ms) Comp Speedup

1 141987 1
2 79936 1.7763
4 45609 3.1131
8 33749 4.2071

Once everything was ready, it was time to approach our implementations of the actual
A* pathfinding algorithm and how we would incorporate MPI Parallelism. We had two
methods: Across Rows and Across Columns.

3.1 Parallelism Across Rows

Figure 1: Diagram of the Parallelism Across Rows Approach.

Each blue rectangle represents the portion of an image that a thread will look at. The dotted
white lines represent the separation to place the antennas. You see that after it finds the
antenna locations, each thread finds the minimum path to the end its section using a greedy
algorithm. Note: the final path from the last antenna to the end is excluded in this diagram.

Our first and primary implementation was to have each thread look at a contiguous set of
rows at a given time. Each thread would find the antenna locations between their respective
starting and ending rows. After each thread finds its antenna locations, it then finds the
minimum path to the end (here the end represents the column at the width of the image and
the same starting row as the start point) using a greedy algorithm (just picks the minimum

This version: May 6, 2024 5 kevinfan, nstefano



15-418 – Final Project Report

path while it’s at a given node) for a given start node. It repeats the last step iterating
through each potential start node (antenna location in the first section of where antennas
could be placed, in the diagram above that corresponds to the first third). After each thread
finds its minimum path across all starting nodes, we reduce across all the threads to find the
minimum. Afterward, the thread with the minimum will print its cost and its path.

3.1.1 Evolution of Parallelism Across Rows Approach

Some of the biggest evolutions was how exactly we were finding the antenna locations.
Originally, we were just looking at the first column in each corresponding antenna section
and trying to place an antenna. This lead to a lot of never placing an antenna for certain
processors in a section, thus never getting any routes. To counteract this, this was changed
to search columns until each processor reached 5 columns with antenna locations in them.
The issue with this was that some processors would have many antenna locations across
certain columns (image dots of potentially shadowed regions to place the antennas in) while
others would not. Even worse for load balance, we saw that some processors would not have
5 columns of antennas until the very end of their section, that they would continue searching
for far longer than that of other processors. To fix this issue, we search 30 columns across
all threads. This became a hyper-parameter that we altered if some processors were unable
to find any antenna locations in the given column bound (i.e. starting off at 5, then 10, then
20, then 50, then 30 which appeared to be our sweet spot for both finding a path and speed).

Secondly, one of the best things about this algorithm is also one of the worst. Since each
processor only sees the antenna location in its section, you can’t consider the path from an
antenna in processor 1 to an antenna in processor 3 for instance. While this may seem like
it invalidates our algorithm, we are okay with this loss of accuracy to the incredible speedup
this provides. However, we did encounter an issue with this sometimes. Sometimes, a path
would not be able to reach an antenna location, in its bounds. We fixed this temporarily by
running through the greedy algorithm again, except allowing the processor to use any part
of the map if it so desires. This increased our runtime, however we were successful. This
was only temporary since applying the final change mentioned in the previous paragraph
actually solved this too with very little increase to runtime, so we removed this change.

We iterated many times on the initialization of our routeMap. Initially we started by
iterating through the entire image itself, which wasn’t too slow. However, we figured we
could make it faster since every thread was only going to look at its own section of the image
we only had to initialize that part of it. Well, this did speed up our initialization time it
saved, maybe one second in total.

We also iterated on our A* algorithm throughout the course of this project. Firstly, we
ran into a lot of memory issues so we wanted to ensure that each time we were calling the
algorithm it was on properly initialized maps. Therefore between each antenna location, we

This version: May 6, 2024 6 kevinfan, nstefano



15-418 – Final Project Report

reinitialized both our own map and our prevented paths (what ensures we don’t go over a
node twice) to ensure that previous paths didn’t impact our finding of the minimum path
for this antenna location. We also played around with different heuristics eventually just
settling on the Manhattan distance because it was both what was most intuitive (and easier
to convert for the other method) and what seemed to work the best. We also realized that we
weren’t accounting for the final antenna location back to the start, therefore not completing
the Magellan route so we had to add a final check that that final location could reach our
starting location via a wrap around (though we didn’t care too much about the cost of the
wrap around).

We also played a lot with our map size to find the optimal size for us to do our test. The
image itself is 5028 x 5028 so doing any standard test for both performance and correctness on
this would take far too long. We battled against having too small of an image meaning that
we were unable to actually find antenna locations in the given size; therefore, not effectively
completing our algorithm. For the more to overcome some of our previous mistakes on
Homeworks, we wanted to ensure that we always had test cases that didn’t evenly divide
either the width or the height which did help us actually diagnose some bugs early on and
how exactly we were calculating the width per processor.

3.2 Parallelism Across Columns

Figure 2: Diagram of the Parallelism Across Columns Approach.

This version: May 6, 2024 7 kevinfan, nstefano



15-418 – Final Project Report

Each blue (vertical) rectangle the portion a thread will look at. We see that initially each
thread finds the antenna locations. Which it traces a path to the edge of where the previous
processor ends marking down the cost of that traversal and eventually, sending those points
to the previous thread as a ghost antenna. After which, each thread with its new set of ghost
antennas will calculate the minimum routes (pictured as the green paths) for each one of it
starting notes to one of the ghost nodes. after which the first thread will iterate and try to
find the minimum path across all the threads using their pre-computed minimum and costs
define the overall minimum route.

Our second algorithm is one that separates the image across continuous columns for each
processor. We decided to go down this route since we weren’t able to figure out a way to
make the parallelize across the frontier approach that we specified in our proposal and mid
semester report. To make up for that and the fact that our previous algorithm didn’t involve
a lot of communication between threads, we wanted to see if we could better optimize the
path finding parts of our algorithm. Firstly, like the previous algorithm, each thread finds the
potential antenna locations. However, the threads are bound by starting width and ending
width as opposed to height or ending height. then each thread will find a route to the previous
threads ending width to ensure that each antenna location can effectively be reached by the
previous thread. Also allowed us to parallelize across our initialization since each thread
is now only considering its contiguous set of columns. After all the threads have collected
their ghost nodes to send we have each thread sent and receive from its corresponding pair
of nodes (i.e. even threads send to odd threads first and then odd threads send to even
threads, with the first thread sending to the final thread first as well). Afterwards, each
thread will find the minimum destination, ghost node, for each one of it starting nodes. it
will then take that information and for each iteration of the thread zero starting node it
will receive a destination node the previous thread chose then an send both the cost and
the minimum destination to the next node in the series, ending with the last thread sending
the first thread the total cost across all threads. Finally thread zero will take each iteration
starting point cost and find the minimum across all of them which will be the total cost of
the path.

3.2.1 Evolution of Parallelism Across Columns Approach

The biggest reason why we wanted to go down this route for another algorithm is because
as we increase the width of our image, we recognize that we were increasing the time that
each A* search would take. Therefore, by separating out the width across the processors,
then we would have the ability to potentially speed up our search time. Furthermore, we
felt as though our initial approach didn’t it involve much message passing, and we wanted
to experiment more with that level of parallelism. However, as we would find out, it didn’t
quite work out for us.

This version: May 6, 2024 8 kevinfan, nstefano



15-418 – Final Project Report

Firstly, we made edits to our initialization, allowing for us to initialize our routeMap in
parallel. As was the same case with the Across Rows approach, this isn’t tremendously help.
Our speed up may be saving a couple of milliseconds at most.
Furthermore, we also optimized our message passing to ensure that as little data as possible
was being sent over, for instance instead of sending over a fix-sized array we first send over a
message dictating the size of the array then sending the corresponding array. Most of these
initial tests were done on the Mac, which had that high bandwidth so we didn’t see much
improvement as we shrunk the sizes of the messages. Even still, we figured the smaller the
better so continued down that route. We also replaced as many broadcasts as possible, going
for of a ring style message pass structure wherever it fit.
Lastly, one of the most important things to note about our project is that there is not
a predetermined correct answer. We bring this up because it was a constant issue when
debugging some of these as the level of parallelism we would implement would dictate what
paths we could actually create. While we touch on this in the previous section, it became
very apparent here as it was the main reason why we had to give up on this approach. The
fundamental issue with this algorithm is that the next node that dictates the minimum path
would not necessarily always dictate a path that can successfully end. In other words, what
would happen is the last two or so antennas would not be able to actually connect back
to our initial starting point (in terms of a wrap around). Therefore the greedy algorithm
approach for the message passing would not work. Note it works for the previous algorithm
because we were able to see the entire width, whereas here, we cannot. Therefore there were
many significant efforts in order to try to make this work. Firstly, we tried to make the
number of antennas that each processor would see larger. Therefore, the chance that we
would run into a dead end would decrease. While we started to see some success in that (i.e.
less paths running into dead-ends) the runtime started to grow far larger than we desired
to continue seeing that as a viable option. We eventually settled on an algorithm that was
to follow the similar approach to the across rows algorithm, with this algorithm just pre-
computing all the costs to the next nodes. However, as we were implementing that approach,
we were recognizing that the across rows algorithm that we were concurrently optimizing
had already completed before the across columns algorithm finished pre-computing all of the
costs. Therefore, then finding the minimum path across all of those costs would result in a
longer running algorithm than our across rows approach. It was here we decided to focus
our efforts on better optimizing the across rows algorithm and making it more consistent (in
terms of workload balance).

This version: May 6, 2024 9 kevinfan, nstefano



15-418 – Final Project Report

4 Results
Note: for the following graphs, a/b/c refers to a problem size of width = (image width /
a), height = (image height / b), and number of antennas = c.

The above are graphs of Total Speedup vs Processor Number for a selection of the tests
we ran on various combinations. For the sake of comparison the default speedup graph we
will be comparing the rest off of will be the first, our M1 16/8/3. For observations, we saw
first that i7 had worse speedup – this is unsurprising given our discussion in the Methods
section about the M1’s superior performance in parallelism. One interesting note here is
that for the i7, the 1 processor actually was faster than 2 processors – this was because the

This version: May 6, 2024 10 kevinfan, nstefano



15-418 – Final Project Report

1 processor test’s greedy algorithm failed to find the actual shortest path which all other
threads found (cost = 107) and instead quickly returned a more expensive path (cost = 409).
This is one interesting limitation to speedup graphs that we encounter in many speedtest
scenarios, especially for greedy algorithms (it’s very easy to quickly return a wrong answer).

The main difficulty with directly comparing a/b/c values to each other is that when
the problem area becomes larger or smaller, we are effectively replacing the current lunar
surface map with a completely new one, as only a subset of the previous shaded area now
represents the entire new shaded area (decreasing the total area to traverse doesn’t shrink
all the obstacles as well to fit in the new smaller zone). Increasing the area results in the
same testing issue. This is worse when the algorithm is greedy and does not always give the
exact shortest path for any image size.

Therefore, we can only give general estimations and reasoning for the effects of larg-
er/smaller image sizes and more/less antennas on speedup. One interesting side effect of
parallizing greedy algorithms in the way we did is that the more processors are used, the
more accurate the returned paths were (lower cost). Observe an example below for a M1
Vertical 16/4/3 test:

Table 4: Vertical Parallelism - Configuration
Threads Cost Time (ms) Speedup

1 397 2668522 1
2 329 1334261 2
4 125 1369963 1.9479
8 107 541534 4.9277

This makes sense, as the path that is returned is the shortest that is found out of all
threads’ greedy algos – if there are more threads, it makes sense that discovering a shorter
path is more likely. Scaling processors then not only improves speed but also results. Inter-
estingly enough, when there were greater speedups, it was more likely that the Cost would
not change between threads. When Cost did see decreases, speedup increases would be less.
Our theory is that as Speedup is calculated as a multiplier on the 1-thread result, when the
1-thread result returns fast for its bad answer, the Speedup of a higher-thread run actually
is weighed down by the fact that for it finding a better path takes longer time, while when
everyone finds the same path, this doesn’t apply. Further testing with non-greedy algorithms
would be able to verify if this theory for our observed results is correct.

For us, as we were testing and evident in the graphs, we found that as we increased the
image height, we gained more possibilities for antenna placements and routes, which meant
slower route and antenna finding by 1 or two threads, which meant our speedup was limited
by those (as discussed in Speedup Limitations). Image width was far more inconsistent,
since, as discussed above, it is a fundamentally new image without increasing the amount

This version: May 6, 2024 11 kevinfan, nstefano



15-418 – Final Project Report

of image height for routes, which can result in scientific zones only have a couple of POIs,
thus reducing the total amount of possibilities, or having exponentially more, increasing the
total runtime. Since we then break up this image into slices per processor and the fact
that there is no uniformness to this data, we sometimes have a couple of threads being the
sole bearers of the new workload. Increasing antennas decreased Cost and increased total
runtime while having mixed results on Speedup. We reason that increasing the number
of antennas increases the number of permutations that have to be calculated, while if the
additional antennas cause there to be new shorter paths, this could either never be found by
the 1-thread (thus it exits with a poor Cost fast) or it means even the 1-thread could find
it now, meaning it will exit with the same cost as the other threads and thus take normal
time to exit and result in high comparative speedup.

4.1 Algorithm Correctness Limitations
For further discussion on parallelization and problem size, both algorithms limit the prob-
lem size as we increase the level of parallelization, but only sometimes. We talked about
our journey to limit this as much as possible, but we find that it is fundamentally tied to
our problem statement. The across-rows algorithm limits our problem space to only paths
that remain in a contiguous set of rows. We are okay with the sacrifice as the chance that a
shortest path exists across many sets of contiguous rows seems unlikely. Moreover, we find
that when a path can’t be found this algorithm returns that very quickly, which allows us
to quickly update hyperparameters in our search. With the across cols algorithm, we reduce
the problem space to only paths that are the shortest from each antenna. Well, we use a
greedy algorithm for both across rows and across cols, it is only across columns that removes
all possible next nodes that are not the minimum.

4.2 Speedup Limitations
While our speedup graphs vary wildly sometimes, we believe that that is due to the problem
size reduction as we increase parallelism. We, of course, have speedup limitations due to the
reduction in across-rows approach and the message passing in the across-columns approach.
We focus most of these speedup limitations on our across-rows approach since we focused
on optimizing it more. We also see a significant workload imbalance (despite efforts to try
to fix it) in the plot below.

This version: May 6, 2024 12 kevinfan, nstefano



15-418 – Final Project Report

Figure 3: Plot of the time spent by each thread in each section of code for the across rows
approach with an 16/16/3 problem size. Note that broadcasting refers to both the time
spent doing the reduction and waiting for the broadcast to arrive.

In truth, we have fairly good workload balance when it comes to finding the antennas
(which shows that our optimization works). The issue comes down to when a thread either
has no antenna or has a very little antennas to run the A* algorithm on. We could dynam-
ically assign these to each thread, although we would then run into issues with having to
properly initialize the route map for whoever is getting the data (since they are now dealing
with rows that they haven’t seen before) would have the potential to increase the runtime
with the new overhead (along with the overhead of dynamic scheduling).
Overall, it’s hard for us to definitively say how effective our parallelization is in our algo-
rithm. The workload imbalance shows that there’s areas to improve, while some of our
speedup graphs show performance better than optimal. We found that as we varied our pa-
rameters, we created new images and new objectives which make it somewhat challenging to
compare between them. Though, we did certainly enjoy every second of this experience, as
we learned how to better deal with problem sizes that change as you vary your parameters.
We also learned about the different effects of parallelization for greedy algorithms when each
thread runs a version on their slice – in cases like ours, it may be that the number of threads
actually changes what result we get. In addition, we learned how to install, implement,
and develop MPI/C++ programs on our own devices, setting them up and going through
processes like adding their Bin to System Environment Variable PATHs, creating our own
customer MakeFiles, and writing one-off Python programs to do tasks like graphing paths
onto the lunar surface imagery.

This version: May 6, 2024 13 kevinfan, nstefano



15-418 – Final Project Report

References
[1] Lunar Reconnaissance Orbiter imagery, https://ode.rsl.wustl.edu/moon/

[2] Nate Otten’s PhD thesis, https://www.ri.cmu.edu/app/uploads/2018/01/thesis_
otten.pdf

5 Work By Each Student
• Kevin Fang: Translation of .IMG LROC file and shadowmap.h header. Project cod-

ing. Poster design and printing. Testing of i7. Result analysis. Creation of performance
charts and tables. Writing report. Maintaining website.

• Nikolai Stefanov: A* algorithm + antenna implementer. Project coding. Fixing
bugs and issues. Optimization of MPI code and testing for M1. Writing report.
Creating per-thread time spent chart. Path graphing script.

Distribution of total credit: 50%-50%.

This version: May 6, 2024 14 kevinfan, nstefano

https://ode.rsl.wustl.edu/moon/
https://www.ri.cmu.edu/app/uploads/2018/01/thesis_otten.pdf
https://www.ri.cmu.edu/app/uploads/2018/01/thesis_otten.pdf

	Summary
	Background
	Approach
	Parallelism Across Rows
	Evolution of Parallelism Across Rows Approach

	Parallelism Across Columns
	Evolution of Parallelism Across Columns Approach


	Results
	Algorithm Correctness Limitations
	Speedup Limitations

	Work By Each Student

